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ABSTRACT

The relation between the apparent angular

extent of a reflection nebula and the apparent

magnitude of its illuminating star derived by

Hubble (1922) has been reconsidered under a less

restrictive set of assumptions. A computational

technique has been developed which permits the use

of fits to the observed m-log a values to deter-

mine the albedo of particles composing reflection

nebulae, providing only that a phase function and

average optical thickness are assumed. Multiple

scattering, anisotropic phase functions, and

illumination by the general star field are con-

sidered, and the albedo of reflection nebular

particles appears to be the same as that for inter-

stellar particles in general. The possibility of

continuous fluorescence contributions.to the sur-

face brightness is also considered.



I. INTRODUCTION

The scattering properties of interstellar particles are most frequently

described in terms of the albedo, y, and asymmetry parameter, g, of the

phase function of Henyey and Greenstein (1941). Van de Hulst and de Jong

(1969) analyzed Witt's (1968) observations of the diffuse galactic light

(DGL) in order to determine y and g. The existence of discrete clouds in

the interstellar medium was taken into account by Mattila (1971) in his.

analysis of DGL observations. These investigations indicate that the

interstellar particles have an albedo of .3<y<. 7 and an asymmetry parameter

of g>.7. The value of g may range from.-1 to +1 as the scatterer changes

from completely backward scattering to completely forward scattering. For

isotropic scattering, g=O.

The starting point for this investigation is the observation that the

values of y and g of interstellar particles as determined from DGL observat-

ions appear to be in fundamental disagreement with the y and g values used

to interpret observations of surface brightness of reflection nebulae.

Hubble (1922) obtained an excellent theoretical fit to reflection nebulae

observations by assuming g=O and y=l for the constituent particles. Henyey

and Greenstein (1939) determine y> .8 under the assumption of an isotropic

phase function.



It is important to recognize at the outset that in seeking the cause

of the discrepancy between the values of y and g determined by DGL studies

and reflection nebulae observations, an implicit assumption is being made.

It is being assumed that reflection nebulae are composed of the same types

of particles which comprise the general interstellar medium. While one

certainly can imagine mechanisms which would invalidate this assumption, the

simplest assumption should be maintained until observations require a more

refined model.

II A GENERALIZED FORM OF HUBBLE'S RELATION

Assuming y=l and an isotropic phase function, Hubble (1922) derived

a theoretical relationship between the apparent size of a reflection nebula

and the apparent magnitude of its illuminating star. He finds

1) me = 10.6-5 log a',

where m, is the apparent magnitude of the illuminating star and a' is the

angular distance in arc minutes between this star and the most distant patch

of nebulosity which can be detected under uniform exposure conditions. The

intention of this present paper is to derive a relationship between the

observable quantities a' and m, which can be interpreted in terms of y and

g; it is intended that there be as few restrictive assumptions as possible.

Let us begin by listing the assumptions which will be made initially

and then proceed to remove each of these assumptions. Initially, assume:

1. The nebula is illuminated by only one star.

2. Only single scattering occurs.



3. The intensity of light from the illuminating star decreases
as r-2, where r is the distance from the star to a point in the
nebula.

4. The apparent size of the nebula is determined by the intensity
of light reaching the parts most distant from the star, rather
than by the absence of dust particles.

5. For any line of sight through the nebula, we may neglect the r-2

dependence of the stellar intensity.

6. For small regions, the nebula may be treated as a uniform plane-
parallel structure.

7. There is no obscuring material between the observer and nebula.

8. The angles between the observer's line of sight and the-front
surface of the nebula are random.

9. Only energy entering the nebula as visible light can leave as
visible light.

Figure 1 shows the geometry assumed in deriving the generalized

version of the Hubble relation. Starlight is incident at angle ai'

measured from the normal to the nebular surface. The star is located at

distance r from the nebula, and the observer, whose distance from the

nebula is R, detects light leaving the nebula in direction as , relative to

the normal. The nebula is of physical thickness D and optical thickness

0o. We define the scattering angle, a, by

2) a = ai + as.

Let us further define the quantities v and po by

3) p = cos as,

4) P = cos ai'

Consider an arbitrary point, P, within the nebula, located a distance

x behind the front surface of the nebula. If k is the extinction (either



scattering or absorption) per unit distance, the optical distance along the

line of sight to the star from P to the front surface of the nebula is

Ti = kx/o 0.

The intensity of starlight at P is

5) Ip = exp[- kx L

where L is stellar luminosity and the absolute value sign arises to include

cases for which the star is behind the nebula. If a is the cross sectional

area for extinction contained in a volume of cross section of A and length

ds situated at P, the flux intercepted by grains at P will be

6) Ipads dA = Ip dr dA.

On interaction, the flux will be reduced to y of its initial value by

absorption and then reemitted into some new direction, e, an angle measured

from the original direction of motion of the light. The angular distribution

of the scattered radiation is described by the phase function, P(cose).

It is normalized to y so that

7) jP(cose) y.

Since P is normalized to y and the scattering angles a and e are equivalent,

we may express the phase function in terms of a and explicitly indicate the

y dependence by the expression p(a,y). The energy scattered into direction

a is then

L4 - exp[- T]  p(a,y) dT dA.

On its trip to the front surface of the nebula, the intensity will be

reduced by a factor of exp[-kx/pl. The energy emerging from area dA

contributed by the grains at P will then travel unhindered to the observer,

giving rise to a flux of
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The total flux reaching the observer will be the integral of this ex-

pression along the line of sight through the nebula. Since

dr = k-- ,

we may integrate equation 8) between the limits 0 and D. If we restrict

ourselves to cases for which 1o > 0 and make the replacement

dA
=h-2 = dw',

integration of equation 8) yields the nebular flux reaching the observer:

9) In = P(ay) -p 2 G(a,r o ) dl',

where To = kD

and

10) G(a,To) =; { l-exp[-T 1 o )]
0 P 1---10

For brevity, this has been written as G(a,TO), although the actual

angular dependence is on ai and a .

The stellar flux reaching the observer is

- L

Since R will be only poorly known, as will r, these terms may be eliminated

from equations 9).and 11) as follows: denote by a the angular separation

between the star and the most distant patch of nebulosity detected at

Hubble's limiting surface brightness. Then inspection of Figure 1 and the

use of the small angle approximation yields

12) r sina = aRc,

where c is a conversion constant from radians to seconds of arc. Dividing



equation 9) by equation 11) and eliminating r and R by use of equation 12),

we may convert to the magnitude system, finding

13) m, = mn + 2.5 log[p(a,y) G(a,Tr) sin 2a] - 5 log a' - 11.64.

Here mn is the limiting surface brightness which can be detected on the

plate in magnitudes/[l" for some standard set of observing conditions and

a' is the angular distance from the star to the most distant patch of

nebulosity, measured in minutes of arc. The numerical constant arises from

numerical constants in the equations and m, is the apparent magnitude of

the illuminating star.

III. CORRECTIONS FOR ILLUMINATION BY THE GENERAL STELLAR FIELD

The generalized Hubble relation between m, and a' which has just been

derived is based on the nine assumptions listed earlier. Since the start-

ing point of this investigation was the fact that the albedo (or equivalently,

the surface brightness) of reflection nebulae appears to be higher than

expected on the basis of DGL studies, we must examine the assumptions in

order to guarantee that we have not overlooked any contributions to the

surface brightness in formulating the equation.

Clearly both the assumptions of single scattering and of illumination

of the nebula by only one source are suspect. Both of these assumptions

may be removed, at least approximately, by specializing the geometry to the

case of a plane parallel structure in order to derive correction terms. The

assumption is being made here that the correction terms devised for a plane

parallel nebula will not differ radically from the correction terms for an

irregular geometry.

The procedure for deriving the correction term for illumination of the

nebula by the general stellar field (hereafter abbreviated GSF) is to

compute the surface brightness to be expected from a plane parallel nebula



illuminated by an isotropic radiation field. The surface brightness of the

illuminating sphere is equal to the average integrated surface brightness

of the sky as seen by the nebula. It is then possible to determine the

GSF component of the surface brightness of the reflection nebula as a func-

tion of y, To, and phase function.

Chandrasekhar (1950) has obtained solutions in closed form for plane

parallel atmospheres for both semi-infinite atmospheres and atmospheres of

finite optical thickness. Of the phase functions considered by

Chandrasekhar, only two will be of interest to us. They are

14) p(cose)=y

and

15) p(cose)=y(l+xcose), -lix.l.

Equation 14) describes an isotropic scatterer and Equation 15) describes

a scatterer whose asymmetry parameter is given by

g = x/3.

Clearly the largest value which g may attain for equation 15) is .33.

Although this is only about half of the value of g which one finds for

general interstellar particles, it is the largest value for which closed

form solutions could be found. The numerical values required for com-

putations for the case of semi-infinite atmosphere were taken from Chandrasekhar

(1950). The corresponding functions for finite optical thickness were

taken from Sobouti (1963) and from Carlstedt and Mullikin (1969). The

intensity of light reflected in any direction was calculated as a function

of y for To = .6, 1, 2, 3, and - with g=O and for r=To for g=.33. The GSF

correction coefficients, which have the physical interpretation of being the

fraction of incident GSF intensity which is diffusely reflected by the

nebula, are listed in Table I. The angle of observation assumed in this



case was 00, but it was found that changing as to 450 resulted in a change

in surface brightness of less than 10% in all cases.

Two points are worthy of note: first, for finite T , the unavail-

ability of the required tabulated functions necessitated using the results

of the isotropic phase function calculations for the phase function of

equation 15). To some extent this can be qualitatively justified by noting

that in the finite case the nebula is illuminated from both sides and the

extent to which light is forward (or backward) scattered by one surface is

about the same extent to which light is forward (or backward) scattered by

the other side. The second point is that neither the assumed illuminating

geometry (a sphere) nor the plane parallel nebular structure is realistic.

If one maintains the same average sky intensity,.but changes the illuminat-

ing geometry from a uniform sphere to a sphere with a brighter band, the

GSF intensity increases. Quantitatively, half of the total intensity was

taken as coming from band of angular extent 300 and the remainder of the

sphere contributed the remaining half of the incident light. This change

increased the GSF correction by 50%. Unpublished calculations by Witt and

Stephens employed the Monte Carlo technique for spherical nebulae and find the

GSF correction to be four times the values given in Table 1. Calcula-

tions were carried out using the values given in Table.l and repeated after

multiplying each value in Table 1 by a factor of four. The larger values

yield GSF contributions which are in good agreement with Mattila's (1970b)

observations of surface birghtnesses of dark nebulae.

In order to incorporate the GSF correction into the calculation, note

that the term mn in equation 13) refers to the limiting magnitude/C1"

which will just blacken a photographic plate under a set of standard



observing conditions. We now recognize that the intensity corresponding

to this surface brightness limit, Ilim , is the sum of two terms:

16) Ilim = GSF,

where Is is the nebular surface brightness due to the illiminating star.

If we denote the GSF correction factors of Table 1 by A(y,gr 0) and the

average surface brightness of the sky seen by the nebula by I0,

lim = I o + 0 A(y,g).

Physically, for a given Ilim, a nebula's apparent size is now increased

since the two sources of surface brightness are additive. Rearranging this

last equation, dividing by 1lim and converting to the magnitude system, we

find

17) -D = mlim-ms = 2.51og I lim

Ilim- o /

D is thus a positive term which is to be added to the right side of equation

13) to include the effect of GSF illumination.

IV. THE MULTIPLE SCATTERING CORRECTION

The second assumption underlying equation 13) is that of single

scattering. The basis of the multiple scattering correction technique is

the empirical observation that the difference between the exact and the

single scattering solutions to the radiative transfer problem is independent

of a to a good approximation. That is, for a set values of y,g, and T o

it is approximately true that

18) I( T0 ) = I () (Y,,, "o)+C (Y,g,T),

where the multiple scattering correction coefficient, C, must be determined

.empirically from a plot of the complete scattered intensity, 1, and the



single scattered intensity, L('), as a function of p for a given Y.

Typical curves are shown in Figure 2. That the validity of this ap-

proximation does not depend on the particular geometry assumed can be.seen

from the work of Mattila (1970a), who solves the radiative transfer problem

for a spherical nebula using the Monte Carlo technique. He presents plots

of a single and multiple scattering intensities similar to those in Figure

2 and his plots show that equation 18) holds true for a spherical geometry.

Empirically it was found that C is very insensitive to Po

The physical reason that C has little dependence on V and p is

easy to understand: C is a measure of the intensity of the radiation which

has undergone more than one scattering and thus, the original direction-

ality which the incident light had has been destroyed by several scatterings.

Numerical values of C were determined by measuring the distance between

the exact and single scattering curves and expressing the results as a

fraction of the incident intensity. This method is quite simple unless

y>.9, in which case the approximation of equation 18) sometimes fails. In

such instances, an estimate of the average distance between the two curves

was made. Table 2 lists the Values of C. Note that there is a slight

difference between the front and rear surface terms.

Denoting the values of Table 2 by C(y,g,To), we can see how to modify

equation 13) to account for multiple scattering. The addition of this

scattered intensity will modify equation 9), making the correct expression

for the nebular surface brightness

19 ) 1n +-

Exactly the same steps which take one from equation 9) to equation 13) can

be taken starting with equation 19), leading to the result



20) m. = mlim + D-51.og[a']+2.51oglsin2a{p(a,yJG(a,To)+CCy,g,To)}]

-11.64+f- N 7o } * 2.5logfexp(-, /o)] .
2110

Here C is multiplied by sin a to correct for projection effects due to

inclination of the line between the star and nebula to the line of sight.

Note that the GSF correction term D, as given in equation 171, has also

been incorporated into this equation. The term mn, representing only the

nebular surface brightness, has been replaced by mlim+D to account for the

fact that the plate limit can be reached by a combination of illumination

from both the illuminating star and the GSF. The last term of equation

20) is an artifice so designed that it is zero for o>0 (star in front

of nebula) and for 10<0 (star behind nebula), this term corrects for the

fact that the star's apparent magnitude is increased by the extinction

within the nebula.

V. THE COMPUTATIONAL TECHNIQUE FOR DETERMINING THE ALBEDO

With equation 20) as a starting point, we can now devise a com-

putational technique for determining the albedo corresponding to any assumed

phase function for the particles composing reflection nebulae. The only

restrictions in practice are that it must be possible to determine the

correction terms C and D.

The observational data which are employed in determining y are

observations of m. and log a'. As shown by Hubble (1922) and by

Dorschner and Gurtler (1966), the points on a plot of m. as a function of

log a' can be well fit by a relation of the form

21) m. = H0-5 log a'.

Note that Ho, the intercept on the m. axis on this plot, is the single



number which results from the obseryational data. Subtracting equation

21) from equation 20) yields

22) q = miim+D(Io,E)-Ho-11.64+2.5<1og[sin 2 a p(a,y)G(a,To +

C(y,g,To)}]+{010o o} * loglexp(-T/ o)]> .
21 o

The condition that the theoretical and observational equations agree is

satisfied when q=0. One new feature has appeared in equation 22)--the

brackets around the last two terms. These brackets indicate averaging over

all values of a and To, a necessary step before equations 20) and 21)

may be subtracted. This can be readily seen when it is recalled that

equation 20) was derived for a specific nebula, under the assumption that

a and To have some unique value, while equation 21) is a result obtained

from observations of many different nebulae with various a and T .values.

The proper technique of averaging over angles is not trivial. Neither

Hubble (1922) nor Zanstra (1927) has considered this correction in detail.

Since the nebular surface brightness does not depend on a in a simple

fashion, it was felt that the best approach to the angular averaging

required in equation 22) was a numerical computation. The method which was

adopted was to start by assuming a phase function (from the limited choice

of two) and an average optical thickness of To, of .6, 1, 2, or m. A

value of y was then also assumed. These assumptions then determine the

correction coefficients (C and D of equation 22). All angles of incidence

and scattering were assumed equally probable and the argument of the logarithm

was numerically averaged over all angles of incidence and scattering

taking angular increments of 100. The value of q could then be calculated.

The assumed value of y was then changed and the process was repeated and



tables of y and q were computed. The value of - corresponding to q=O

was then determined by interpolating the table.

VI. RESULTS OF THE CALCULATIONS

The formalism which has been developed allows one to calculate the

albedo of reflection nebular particles if one-assumes a phase function and

average value, given the two observational values mli m and Ho. The

observational data were taken from the original work of Hubble (1922) and

from the more extensive work of Dorschner and Ggrtler (1966), who deter-

mined log a' values from the Palomar Sky SOrvey prints in both the red

and blue bandpasses.

Table 3 summarizes the results of the calculations. Here I is the

average GSF intensity in units of 10th magnitude stars per square

degree, mlim is the plate limit in m/[", and H is the m-axis intercept

given by each author. The uncertainties in y values of Table 3 were

determined by varying each of the input parameters by its maximum un-

certainty and in such a direction as to make y as large (or small) as

possible. Uncertainties in C were as high as ±30% in some cases, corres-

ponding to an uncertainty of ±.05 in y. The largest uncertainty in y

arises from the GSF correction.

The value of y which one determines for particles of reflection

nebulae is seen to depend on the average optical thickness, to, of such

nebulae. An upper limit to the average optical thickness is probably

about 3, a value determined by Lynds (1965) for a high latitude dark

nebula and by Mattila (1970b) for the Southern Coalsack. While there are

undoubtedly many nebulae much thicker than this, it must be remembered that

o is the average thickness. The lower limit to the optical thickness is



set by selection effects and is about To=.6. The average T0 value

is probably between 1 and 3.

Inspection of Table 3 indicates that if one accepts the restriction

that l1T o3, the albedo determined for the particles comprising reflection

nebulae is seen to agree to within observational uncertainties with the

value of albedo determined for interstellar particles in general. The

physical reason that the value which is determined for y decreases with

increasing TO is.that as nebulae become more optically thick, they reflect

more of the incident light, and thus requiring lower reflectivity of the

particles.

VII. SELECTION EFFECTS AND THE BASIC ASSUMPTIONS

The results of the previous section indicate that the albedo of

reflection nebular particles seems to be the same as the value for inter-

stellar particles as determined by DGL studies to within observational

uncertainty. It will now be shown that the alteration of mostof the basic

assumptions will raise the value of y above that shown in Table 3.

In what follows it is useful to note that any effect which decreases

log a' will result in the determination of a value of y which is lower

than the true value.

Assumption l: This assumption that the nebula is illuminated by only one

star has been removed by the inclusion of the term D(Io,A) in equation 22).

Assumption 2: The correction for multiple scattering has been made by

including the term C(y,g,T o) in equation 22).

Assumption 3: The intensity of light reaching the front surface of the

nebula could be less than the value used in deriving the theoretical relation-

ship due to the presence of matter between the star and the surface of the

nebula. Although it is difficult to estimate the magnitude of this effect,



its direction is clear--intervening matter makes nebulae appear smaller,

causing the y value determined from equation 221 to be too small. Thus

the larger albedo values derived by Hubble (1922) and Henyey and Greenstein

(1939) are not due to intervening matter.

Assumption 4: Nebulae having their apparent angular dimensions limited

by a lack of scattering dust will necessarily appear smaller than they

would if their extent were determined by photon limitations. Since

equation 22) was derived on the assumption of all nebulae being photon

limited, the existence of dust limited nebulae reduces the apparent sizes

of some nebulae, thus again causing the value of y derived from equation

22) to be too small. The magnitude of this effect is also difficult to

estimate, but dust limitations are not .responsible for the large albedo

determined for reflection nebulae by earlier workers.

Assumption 5: Including the r-2 dependence of stellar flux within the

nebula will reduce the flux inside the nebula, resulting in lower surface

brightness values, smaller a' values, and consequently a value of y which

is lower than the actual value.

Assumption 6: Inspection of the steps leading to equation 22) reveals that

the assumption of a uniform plane parallel nebular geometry never enters

directly into the calculation. The entire argument leading to equation 13)

is independent of geometry, except for the term G(a,To) of equation 8)

and 10), which involve only optical distances and directions. The plane

parallel assumption enters most importantly into the calculation in the

determination of the correction terms C and D. While the importance of

departure of the assumed geometry from a plane parallel structure is dif-

ficult to estimate, the similarities between the plane parallel results

computed here and the results of Mattila (1970a) (see Section IV) do not

indicate strong dependence of results on the specific geometry.



Assumption 7: The possibility that there is obscuring matter between the

nebula and the observer must be considered under two different circumstances.

The first is the case for which the extinction is constant over the field

of view. Cederblad (1946) has shown that this leaves the form of the

Hubble relation unaltered. In this case, the value of y determined from

equation 22) will be unaltered also. This will not hold true if the

extinction changes across the face of the nebula.

In constructing m-log a' diagram there may be a selection effect

which operates to make nebulae appear too large. To visualize the origin

of this effect, consider a star situated in front of a plane parallel

nebula. With no intervening extinction, one would see a star in the center

of a nebula whose surface brightness fades evenly into the night sky back-

ground. However, the introduction of rapidly varying extinction over this

scene results in some random value of extinction for the star and a dis-

tribution of extinction for the "edges" observed for the nebula. An

observer will select the patch of nebulosity experiencing the lowest ex-

tinction of log a'. This leads to an overestimate of log a' for every case

except that for which the extinction suffered by the star is less than that

experienced by every point at the detectable "edge" of the nebula. This

effect would cause an overestimate of y. If the difference between the

extinction suffered by the star and by the edge of the nebula is small

(less than .1 magnitude), the change in H will not be enough to alter y

by more than about 0.05, even if the effect occurs in every nebula observed.

If the effect is very large, and an observer recognizes the presence of fore-

ground extinction, the nebula can be omitted and the results will be un-

affected by this effect. However, the probability of the presence of an

intervening cloud across whose face the extinction changes by more than .1



magnitude and whose position overlaps a reflection nebula is difficult to

estimate realistically. A rather hard upper limit to the magnitude of

this effect can be obtained by adopting the standard cloud picture of the

interstellar medium as discussed by MUnch (1952) or Spitzer (1968). We

assume the interstellar medium to be composed of uniform clouds character-

ized by an extinction of .2 magnitude and a density such that there are

typically about 8 clouds in a 1 kpc. line of sight. For a rough upper

limit to the magnitude of this effect, suppose that in every reflection

nebula, the star is behind two more standard clouds (or .4 magnitude) than

some point on the nebula's edge. This increases the value of H by .4,

corresponding to a change in y of at most .03. Thus, although intervening

matter between the nebula and the observer might raise the value determined

for y, the magnitude of the effect is small.

Assumption 8: The assumption that the distribution of angles ai and as

is random appears to be sound since the sun does not occupy a special point

in the Galaxy. However, there is a possible selection effect which would

cause observers to preferentially detect nebulae whose angles as are near

900. To estimate the possible importance of this effect, the calculations

of equation 22) were repeated, but with all contributions to the angular

average were weighted double if as were larger than 450.. The effect was

found to have a very small influence on y.

Examination of the assumptions to this point indicates that the

values given in Table 3 are lower limits in the sense that the alteration

of any assumption except the seventh or eighth would increase the value

obtained for y. However, in those cases for which the magnitude of

effects can be estimated, the change in y is seen to quite small and

there appears to be no reason to believe that the value determined for the



albedo of reflection nebular particles by this technique is unreliable.

VIII. THE POSSIBILITY OF FLUORESCENCE

The possibility that the ninth assumption is invalid and that some

radiation leaving the nebula as visible light entered in another form can

be discarded on the basis of the previous paper by Rush and Witt,(1974). However,

it is of interest to be able to determine how sensitive the value which is

obtained for the albedo is to any possible fluorescence. This would permit

the rejection of any model of interstellar particles which implied the exis-

tence of fluorescence whose intensity would significantly alter the

albedo determined for the particle.

With the formalism developed above, it is a simple matter to include

the effect of fluorescence. For simplicity, assume the fluorescent light

is emitted isotropically. Let us then define a fluorescence parameter,

4, as the ratio of the component of surface brightness due to fluorescence

to the component due to reflection. Inspection of equation 22) shows that

the reflected surface brightness is given by the terms

sin2 p(a,y) - G(a,T o ) + C(y,g,T)}

Since the term in brackets is the reflected intensity, multiplying this by

a factor of

1+0

will add in the additional contribution to the surface brightness due to

fluorescence. With this modification, a value was assumed for D and the

calculations were repeated with 0 = .1 and = .3. The results are shown

as the last two sets of entries in Table 3.

IX. CONCLUSIONS

A reformulation of the Hubble relation for reflection nebulae has

"F



resulted in a computational technique for calculation y from observations

of m and log a' if one assumes a phase function and ro value. Multiple

scattering and illumination of the nebula by the general stellar field

are taken into account.

It has been argued that alteration of most of the assumptions made

in the derivation of this formulation would result in an underestimate of

the value of y obtained by this method. The alteration of assumptions

#7 and #8 would result in a very small (.05-.07) overestimate of y. Thus,

the values of y obtained from reflection nebulae appear to be in substantial

agreement with those values obtained for interstellar particles by

DGL workers.

The calculations described here indicate that the problem of the large

extent of nebula BIO cannot be resolved by additional surface brightness

contributions from the galaxy or fluorescence. In order to reconcile the

size of this nebula with the Hubble relation, the dust would have to be

a 100% efficient converter of ultraviolet radiation into visible and the

star would have to be more than a hundred times more luminous in the ultra-

violet than in the visible. The possibility suggested by Struve (1961)

that BIO contains a group of newly formed stars at its center appears to be

a more fruitful hypothesis.

I would like to thank Dr. Adolf Witt for suggesting this problem and

for his guidance and criticism during its solution.



TABLE I GENERAL STELLAR FIELD CORRECTION COEFFICIENTS

o y-l y=.9 _y.8 "Y.7 Y:.6 y: .3

.6 .12 .10 .08 .06 .05 .02

1.0 .17 .13 .10 .08 .06 .02

2.0 .23 .16 .11 .08 .06 .02

, ,g=0 .50 .30 .14 .11 .08 .03

,g=.33 .31 .20 .11, .08 .05 .01



Table II The Multiple Scattering Correction Coefficients, C(y,g,T o )

o  g .y=l .y=.9  .y.8 y=.7 '.6 .=.5 .y=.4 .y-.3

Front .6 0 .20 .16 .12 .09 .07 .05 .04 .03

1.0 0 .27 .21 .15 .10 .07 .05 .03 .02

2.0 0 .41 .29 .17 .11 .06 .04 .02 .01

0 .82 .57 .17.. .11 .06 .04 .02 .01

S .33 .46 .32 .17 .11 .06 .04 .02 .01

Rear .6 0 .19 .14 .10 .08 .06 .04 .02 .02

1.0 0 .21 .15 .10 .07 .05 .03 .02 .01

2.0 0 .21 .12 .04 .03 .03 .02 .01 .00



Table III Summary of Results of Model Calculations

.S . .m
Observer Io n mlim - H T0  (g=O) y(g=1/3)

Hubble 66 23.25 11.1 .6 .89-1.00 .94-1.00
(1922) 1.0 .76-.90 .81-1.00

2.0 .56-.63 .64-.75
3.0 .34-.38 .48-.51

Dorschner & 66 23.6 12.0 .6 .93-1.00 .97-1.00
Gurtler (1966) 1.0 .81-1.00 .83-1.00
Blue 2.0 .67-.82 .72-.84

3.0 .45-.55 .60-.67

Dorschner & 116 22.4 10.8 .6 >1 >1
GUrtler (1966) 1.0 .92-1 .96-1
Red 2.0 .74-.83 .80-.88

3.0 .50-.57 .64-.69

Dorschner & 66 23.6 12.0 .6 .91-1.00 .95-1.00
Girtler (1966) 1.0 .79-1.00 .83-1.00
Blue 2.0 .64-.79 .70-.84
+ 10% fluorescence 3.0 .43-.51 .55-.65

Dorschner & 66 23.6 12.0 .6 .86-1.00 .91-1.00
GUrtler (1966) 1.0 .75-.98 .80-1.00
Blue 2.0 .60-.72 .67-.80
+ 30% fluorescence 3.0 .39-.45 .53-.60



REFERENCES

Aller, L. H., 1956, Gaseous Nebulae, John Wiley and Sons, Inc.

Carlstedt, J. L., and Mullikin, T. W., 1966, Ap.J.Supp.Ser., 12, 499.

Cederblad, S., 1946, Lund. Obs. :Medd., Ser. II, No. 119.

Chandrasekhar, S., 1950, Radiative Transfer, Dover Publications.

Dorschner, J., and GU{rtler, J., 1966, A.N., 289, 57.

Henyey, L. G., and Greenstein, J. L., 1939, Ap.J., 89, 647.

Henyey, L. G., and Greenstein, J. L., 1941, Ap.J., 93, 70.

Hubble, E., 1922, Ap.J., 56, 416.

Hulst, H. C., van de, and de Jong, T., 1969, Physica, 41, 151.

Lynda, B. T., 1965, P.A.S.P., 77, 134.

Mattila, K., 1970a, Astron. & Astrophys., 9, 53.

Mattila, K., 1970b, Astron. & Astrophys., 8, 273.

Mattila, K., 1971, Astron. & Astrophys, 15, 292.

Mdnch, G., 1952, Ap.J., 116, 575.

Rush, W. F., and Witt, A. N., 1974, (t' o, 1d~ ! "t . ? S-: Orp

Sobouti, Y., 1963, Ap.J., Supp., Ser., 7, 411.

Spitzer, L., 1968, Diffuse Matter in Space, Interscience Publishers, New York.

Struve, 0., 1961, Sky and Telescope, 22, 197.

Struve, 0., and Swings, P., 1948, P.A.S.P., 60, 51.

Witt, A. N., 1968, Ap.J., 152, 59.

Zanstra, H., 1927, Ap.J., 65, 50.



FIGURE CAPTIONS

Figure 1 - The symbols used in the derivation of the generalized Hubble
Relation.

Figure 2 - The relation between the exact (solid line) and single scattered
(broken line) solutions to the radiative transfer problem are
seen to be constant, independent of angle. The assumed values
of parameters are shown on each plot. Ordinate units are
incident intensity.
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